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SUMMARY

A prototype software system has been constructed to detect anomalous Space Shuttle Main

Engine (SSME) behavior in the early stages of fault development significantly earlier than the

indication provided by either redline detection mechanism or human expert analysis. The major
task of the research project is to analyze ground test data, to identify patterns associated with the
anomalous engine behavior, and to develop a pattern identification and detection system on the
basis of this analysis.

A prototype expert system which was developed on both PC and Symbolics 3670 lisp machine
for detecting anomalies in turbopump vibration data was checked with data from ground tests
902-473, 902-501, 902-519, and 904-097 of the Space Shuttle Main Engine.

The neural networks method was also applied to supplement the statistical method utilized in the
prototype system to investigate the feasibility in detecting anomalies in turbopump vibration of
SSME.

In most cases the anomalies detected by the expert system agree with those reported by NASA.
On the neural networks approach, the results are given the successful detection rate higher than
95% to identify either normal or abnormal running condition based on the experimental data as
well as numerical simulation.

1. INTRODUCTION
1.1. SSME Cycle

The Space Shuttle Main Engine (SSME) is a complex and high performance propulsion system.
A schematic of the engine with typical 109% power level operational parameters are shown in
Figure 1. In the SSME cycle, several turbopumps are involved (Ref. 1). At the propellant inlets,
low pressure fuel and oxidizer turbopumps (LPF/OTP) provide the proper pressure head for the
two high pressure pumps. Fuel from the high pressure fuel pump discharge flows to cool the
main combustion chamber (MCC), nozzle, and other hot components of the engine. The main
chamber coolant discharge powers the low pressure fuel turbine (LPFT). The low pressure
oxidizer turbine (LPOT) is driven by the oxygen from the high pressure oxidizer pump (HPOP).
The oxygen is also fed to a preburner boost pump (PBP) to supply oxidizer at a sufficiently
higher pressure level to the preburners. The fuel-rich combustion gases are provided by the two
preburners to each respective high pressure turbine. The turbine discharge is mixed with oxygen
from the HPOP outlet. Final combustion occurs in the MCC and the combusted gases expand
through the supersonic nozzle to produce the thrust.

1.2. Vibration of Pumps

The bearings of the HPFTP and the HPOTP have wear limitations. The HPOTP bearings are
more critical since they are bathed and cooled in LOX. During the early days of the SSME
program, two major HPOTP failures increased the emphasis of turbomachinery monitoring. One
of the key sensors to detect the bearing wear and condition is the strain gauges mounted
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internally and externally near the turbopumps. Housing vibration is measured by external
accelerometers. In the present study, the major effort is to employ time series data from strain
gauges and accelerometers for early detection of turbopump anomalies, such as bearing wear,
cage condition, and race condition.

1.3. Methods of Detection

The expert system has been utilized to analyze vibration data from each of the following SSME
components: high-pressure oxidizer turbopump, high-pressure fuel turbopump, low-pressure fuel
turbopump, and preburner boost pump. The expert system locates and classifies peaks in the
power spectral density of each 0.4-sec window of steady-state data. Peaks representing the
fundamental and harmonic frequencies in the power spectral density of both shaft rotation and
bearing cage rotation are identified by the expert system. The anomalies are detected based on
the amplitude of peaks of fundamental and harmonic frequencies. These peaks are found on the
basis of the SSME power level, the ratio of cage to shaft rotation, and the required consistency
among the different harmonics of each. These data are reduced to the proper format from sensor
data measured by strain gauges and accelerometers. By using the statistical method, anomalies
are then detected on the basis of sequential criteria and two threshold criteria determined from
running averages and standard deviations of nominal data. These sets are individually for the
amplitude of each of these peaks: a prior threshold used during the first few windows of data
in a test, and a posterior threshold used thereafter.

For the neural network monitoring anomalies, the input layer of a three layers neural network
uses the same peaks as that of the statistical method as the basic inputs. The statistical method
system will be reported first and the neural network approach later.

2. MONITORING SENSORS AND SPECTRAL DATA

Early monitoring instrumentation consists of external accelerometers and internal strain gauges
to monitor the overall loads and vibration levels in the time domain. In many situations, due to
the stiffness and damping of the turbopumps, the bearing wear can be directly correlated with
the housing vibration as measured by external accelerometers. A strain gauge is mounted to the
housing weld of some of the HPOTP units in order to examine the loads at that location. It was
found that the bearing characteristics have a close relationship with these weld strain gauge data.
The Flight Accelerometer Safety Cutoff System (FASCOS) has been developed and successfully
used in ground tests as a redline indicator. In short, the vibration data system is primarily
supplied by the turbopump accelerometers and FASCOS.

Power spectral densities were obtained from NASA by FFT (fast Fourier transform) for
sequential 0.4-sec windows of data. The typical data for the amplitudes at various frequencies,
especially at synchronous frequencies and its harmonics are shown in Figure 2 for high-pressure
oxidizer turbopump. A cascade plot of spectral density for an external accelerometer mounted
on the high pressure fuel pump is given in Figure 3. It can be seen that there is no appearance
of anomaly between 70.0 and 85.0 seconds into the test time frame. The anomalies appear in
later time windows around 170.0 seconds.
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3. EXPERT SYSTEM BASED ON THE STATISTICAL METHOD

The prototype expert system based on the statistical method has been designed for detecting
anomalies in turbopump vibration data from ground tests of the Space Shuttle Main Engine.

3.1. Pre-processing of Sensor Data

Vibration data was provided by NASA in the form of FFT from accelerometers mounted on the
oxidizer and fuel pumps. A set of Fortran programs running on the UTSI VAX 11/780 has been
developed to read these data tapes in NASA binary format (which is inherently machine-
dependent), swaps bytes from the NASA binary format to the VAX internal binary representation,
and then converts the data into a portable ASCII format. After initial preprocessing on the VAX,
the power spectra are stored in a form which can be quickly sent to any other platform at UTSL.
Currently, the data are moved via ethernet to a Symbolics 3670 lisp machine or a PC, and are
analyzed as input by the expert systems running on these two platforms.

3.2. Two Versions of System

The earlier operational expert system (Ref. 2) was implemented on a Symbolics 3670 lisp
machine. While good preliminary results have been obtained with this implementation, the lisp
machine platform and the proprietary lisp language available on this platform both severely limit
the portability of the expert system software. Also, the lisp language does not produce run-time
code as efficient as that produced by compilers of procedural languages.

g

In order to maximize the portability of the expert system software and improve the user interface,
a re-implementation of its logic in the ANSI standard version of the C programming language
was accomplished on PC (Ref. 3). By employing ANSI standard C with the standard C I/O
library and making few changes on machine-dependent portion, the expert system can run on any
platform which has sufficient memory and disk space for the operation of the software and for
the data files it requires.

3.3. System Components

Four major modules of the system (C version) are Frequency Extractor, Anomaly Detector,
Hypothesis Generator and User Interface, as illustrated in Figure 4.

The Frequence Extractor is designed to identify the fundamental and harmonic frequencies of
both shaft rotation and bearing cage rotation in each FFT window.Firstly peaks representing
candidates for the shaft fundamental are reliably found based on an empirical linear fit, for each
type of turbopump, of shaft rotation speed to SSME power level as given in Figure 5. The actual
shaft and cage fundamental and their harmonics are then identified based on the ratio of cage to
shaft rotation and the required consistency among the different harmonics of both shaft and cage.
Freq-Extra is also designed to detect the intermittent frequencies whose amplitudes are above a
specific value (noise-level).

Anomalies are then detected in Anomaly Detector on the basis of thresholds (prior and posterior)
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and sequential criteria set individually for the amplitude of each fundamental and harmonic
frequency of both the shaft and the cage. A prior threshold is used during the first few windows
of data in a test, while data is first being accumulated for that test. Based on the accumulated
data, a posterior threshold is then determined and used for the remainder of the test. Values for
the prior threshold of 300% of the amplitude observed in the first window of data, and values
for the posterior threshold of 5 standard deviations above the running average of nominal data
have been found to give good results for each of the ground tests analyzed to date. For the
threshold criteria, anomaly of any identified frequencies is detected when its amplitudes is above
its threshold. For sequential criteria, anomaly of any identified frequency is detected when
anomalies keep showing in more than three consecutive windows.

The Hypothesis Generator creates hypotheses to apply to either a single sensor or multiple
sensors for anomalies data analysis. Hyper-Gene provides recommendations based on the return
either from a single sensor detection or multi-sensors identification weighing output of each
return. In the case of multi-sensors, the system will determine the severity of anomalies,
measured by possibility, good possibility and almost positively, based on the consistence and
coherence of each sensor.

The User Interface is graphics-oriented and mouse-driven. It provides users several windows to
actively select as screen or hardcopy display, such as Process Status, Single FFT Window,
Multiple FFT Windows, Waterfall plots, FFT Recall Windows and Output Files. With a mouse
and simple pulldown menus, users can switch among these windows instantly anytime during
processing. A sample of interactive (or simulated on-line) session is given in Figure 6. Users first
sketch processing plan interactively as in Figure 6a. Figure 6b shows the Process status at the
specific time at certain power level. The plot of Single FFT and analysis information is shown
in Figure 6c at a specific time. Figures 6d and 6e are the Multiple FFT plots and Waterfall
(cascade plots) plots, respectively. FFT recall windows are used for post-test analysis to recall
all information in the complete test process, as shown in Figure 6f. The output files save detail
records for further examining of anomalies.

3.4. Results of Anomalies Data Analysis

The results of anomalies detected by the system for the data from the ground tests 902-473,
902-501, 902-519 and 904-097 are summarized in Tables 1, 2, 3 and 4, respectively. Results
obtained from NASA reports are also listed in a separate column for comparison. The expert
system results agree with those stated in the NASA reports, with two exceptions: (1) In test 902-
519, HPFTP 50% Sub-synchronized frequency was not detected; and (2) In test 904-097: HPOTP
second cage frequency was not detected by the system. These discrepancies require further
investigation. The overall results assure us that the current strategy for detecting anomalies
works reasonably well for most cases tested.

4. NEURAL NETWORKS DIAGNOSIS

For a specific turbopump component, the fundamental frequency and harmonics for the normal
and abnormal conditions have their distinct characteristics as shown in Figures 7 and 8. The
neural networks algorithm is a powerful pattern recognition method. Thus, the application of the
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neural nets techniques to the HPFTP’s data from test 902-501 and 902-519 allows us to examine
the feasibility in diagnosing the anomalies (Ref. 4).

4.1. Neural Network Algorithm Description

A three-layer Back-Propagation (BP) Neural Network has been selected for the present study.
Multilayer BP networks have been studied extensively and are widely used for pattern
classification. Multilayer networks are able to classify non-linearly separable classes. In the
present case, a three layer network is utilized including input layer, hidden layer and output layer.
A 3-layered (input, hidden,output), fully connected, feed-forward network as shown in Figure 9.
The normalized data sets are utilized. Both input and output are continuous-valued (between -0.5
and 0.5) vector. The outputs generated by the network are compared with the desired or target
outputs. Errors are computed from the differences, and the weights are changed in response to
these error signals as dictated by the Generalized Delta Rule (Ref. 5). Thus, a BP network learns
a mapping function by repeatedly presenting patterns from a training set and adjusting the
weights. A commercial neural network program named ANSim (Ref. 6) is utilized for the
training process as well as the testing process.

The Training Procedure is in the iterative fashion. It loops repeatedly over the set of training
patterns until the total root mean square (RMS) error for all patterns is less than the specified
value, e.g. 0.1. The Testing Procedure is forward feed processing.

4.2. Neural Network ANSim Software

A commercial neural network program named SAIC ANSim 2.30 is a graphics oriented, menu-
based artificial neural system (ANS) simulation program, which provides a complete complement
of neural model development, allocation and analysis capabilities, including a powerful ANS
creation, training, execution and monitoring tool. ANSim enables users to quickly implement
and utilize ANS models using 13 paradigms such as Back Propagation (BP), Hopfiled Network,
etc. ANSim enables the user to configure any number of ANS neural networks. It drives each
network with a sequence of training and/or input data. For each model, ANSim will (1) monitor
the response, (2) capture the output, and (3) save the configuration for later re-use. ANSim is
integrated under Microsoft Windows to provide an effective, easy-to-use interface. A Floating
Point Processor for ANSim is available to speed up the training clock time. A PC 386 (VGA
or EGA monitor) with the SAIC’s Delta Floating Point Processor, which is a 22 MFlop AT bus
compatible processor, allows for high speed Neural Network Systems training and processing.

4.3. Results Obtained from the Experimental Data

The typical data sets are obtained by the pre-processor module as shown in Figure 10. consisting
of synchronous frequency samples of normal and 240-hz abnormal data sets for sensor 696 and
698 of Test 902-501. The sensor 613 of Test 902-519 for Synchronous and Sub-synch frequency
data is shown in Figure 11. The initial selected component for the current study is the HPFTP.
The vibration data from ground tests 902-501 and 902-519 for the HPFTP as shown in Figures
7 and 8 are utilized to the current vibration anomalies detection.  The reserved testing data,
which have not been used for training the network in the same test, are applied to assess the
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effectiveness and feasibility of the network approach. The successful detection rate is higher than
95% to identify either normal or abnormal running condition. The results have indicated that
the application of Neural Network to the available SSME vibration data sets in diagnosing
existing faults in the data is a viable method. To reassure the neural network’s effectiveness, the
investigation of more cases and more fault scenarios are required. Since the limited ground test
data is available, the study using the data generated from a NASA/MSFC’s numerical simulator
is reported in the next section.

4.4. Results Obtained from Numerical Simulator

The current simulated data were provided by Fred Kuo at MSFC from a numerical simulator
(Ref. 7) developed at NASA/MSFC. Three data sets are obtained from the Numerical Simulator.
These cases received from NASA on Nov. 15, 1992 and Feb. 18, 93 have been studied. Two
of these sets are "Rotor.DB" and the other is "Rotor.UB". The displacement response in the Y
and Z direction and the side-force in the Y and Z direction vs. dimensionless time as shown in
Figures 12, 13 and 14, respectively. These sample numerical data were analyzed by fast Fourier
Transform in the spectrum plots with three different sizes of window for sample response-
amplitude data plotted in Figures 15, 16 and 17. The side-force sample data are shown in
Figures 18, 19 and 20. The sample results are given in Tables 5 and 6 for both Y-response and
Y-force of Rotor.UB and Rotor.DB, respectively. Even with the limited data base, the successful
rate is very reasonable after 300 training cycles in SAIC ANSim 2.30.

4.5. Comments on the Approach of Neural Networks

For the training process of the Neural Networks, the clock time of computer computation on a
PC-386 with Floating Point Processor is less than 1 minute. The testing time of the feed-forward
process is near real time in the present case. This is important to know this computation time
for planning on-line or off-line operation in addition to its ability to identify the correct
anomalies.

The limited application of neural networks to the HPFTP and the simulation data have shown the
effectiveness and feasibility to diagnose the anomalies of turbopump vibrations. The further
investigation on data from a numerical simulator and actual experiment data is warranted in the
future.

5. CONCLUDING REMARKS

Automatic detection of anomalies in Space Shuttle Main Engine Turbopumps has been
implemented as a prototype software system on a Symbolics 3670 lisp machine and on a PC.
The system has demonstrated its capability in detecting anomalies in turbopump vibration data
earlier than the indication provided by the redline detection mechanism. The present strategy
based on the statistics distribution of data in detecting anomalies for SSME turbopumps seems
to be working well, even though some limited cases require further study. On the other hand,
the limited application of neural networks to the HPFTP has also shown the effectiveness and
feasibility to diagnose the anomalies of turbopump vibrations. The further investigation on data
from experimental data sets and the numerical simulator is recommended before implementing
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for the on-line ground testing.
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(b) Anomaly Condition at t=375 sec.
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Sensors of Test 902-501 at the Thrust-level 109%.
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Samples of Normal and 240-hz Abnormal Data from HPFTP
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Figure 8. Samples of Normal and Sub-synchronous Abnormal Data
from HPFTP Sensors of Test 902-519 at the Thrust-level 109%.
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O ..... . O Q Input Layer

(13 nodes : Shaft fundamencal -
Shaft fundamental's three harmonics
cage fundamental .
Cage fundamental's three harmonics
uter race, 240HZ, Sub-sync

' . Inner race,o
O ...... Q Hidden Layer thrust-level)

( 6 nodes )

O O Q Output Layer
(2 nodes: for FASCOS-HPFP, normal §& 240HZ abnormal

for HPFP-RAD, normal & Sub-sync abnormal)

Figure 9. Three-layer Back-propagation Neural Network Architecture.
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{0

Raw Data (Y-Response of ROTOR.UB, Received on Feb 18,1993 )

After 300 training cycles
Random Selection of Training Data Sets

f-Testi

inin

~Actual Class of Observation

Normal Abnormal Total P2%

Normal 3 0 3 100
Abnormal 0 5 5 100
Total 3 5 8 100
P1% 100 100 100 100

W Testing After Trainin |
Actual Class of Observation

Normal Abnormal Total P2%

Norma[ 1 0 1 100
Abnormal 1 5 6 83
Total 2 5 7 91
P1% 50 100 75 83

NOTE: P1: p(prediction=x, actual=x), P2: p(actual=x, prediction=x)

Table 5.

30

Neural Networks Results of ROTOR.UB

a. for Y-Response
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Raw Data (Y-Forece of ROTOR.UB, Received on Feb 18,1993 )

After 300 tralning cycles
Random Selection of Training Data Sets

if- in r inin
Actual Class of Observation

Normal Abnormal Total P2%

Normal 3 0 3 100
Abnormal 0 5 5 100

Total 3 5 8 100

P1% 100 100 100 100

New Data Testing After Trainin
Actual Class of Observation

Normal Abnormal Total P2%

Norma] 1 0 1 100
Abnormal 2 4 6 67
Total 3 4 7 84
P1% 33 100 67 75

NOTE: P1: p(prediction=x, actual=x), P2: p(actual=x, prediction=x)

Table 5.

Neural Networks Results of ROTOR.UB
b. for Y-Force
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Raw Data (V-Response of ROTOR.DB, Received on Feb 18,1993 )

After 300 training cycles
Random Selection of Training Data Sets

f- in ini
Actual Class of Observation

Normal Abnormal Total P2%
Normal 6 0 6 100
Abnormal 0 1 1 100
Total 6 1 7 100
P1% 100 100 100 100

w Data Testing After Trainin

Actual Class of Observation

Normal Abnormal Total P2%
Normal 5 2 7 71
Abnormal 0 1 1 100
Total 5 3 8 85
P1% 100 a3 67 76

NOTE: P1: p(prediction=x, actual=x), P2: p(actual=x, prediction=x)

Table 6.

Neural Networks Results of ROTOR.DB

a. for Y-Response
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Raw Data (Y-Forece of ROTOR.DB, Received on Feb 18,1993 )

After 300 training cycles
Random Selection of Training Data Sets

Sg l-Testing_After Training

Actual Class of Observation

ol

Wi
1

v

V15
i

Vo |
( (O il
L + I " I dhid e W

il

i

Normal Abnormal Total P2%
Normal 6 0 6 100
Abnormal 0 1 1 100
Total 6 1 7 100
P1% 100 100 100 100
New Data Testing After Training
Actual Class of Observation
Normal Abnormal Total P2%
Normal 6 1 7 86.
Abnormal 0 1 1 100
Total 6 2 8 a3
P1% 100 50 75 84

NOTE: P1: p(prediction=x, actual=x), P2: p(actual=x, prediction=x)

Table 6.

Neural Networks Results of ROTOR.DB

b. for Y-Force
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